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A genera l  r e l a t ion  b e t w e e n  s t r u c t u r e  fac tors  is de r ived  for  t h e  case w h e r e  t h e  e lec t ron  dens i t y  is 
k n o w n  in pa r t s  of  t he  u n i t  cell. Some special  cases are  d iscussed briefly.  Also, i t  is s h o w n  t h a t  no  
i n fo rma t ion  a b o u t  t he  phases  c a n  be  o b t a i n e d  f rom t h e  fac t  t h a t  i n t e r a t o m i c  d i s tances  are  k n o w n  to  
exceed  a ce r t a in  m l n l m t u n .  

Introduction 
On several occasions in recent years (among them the 
Computer and Phase Conference at  the Pennsylvania 
State College, April 1950) there has been some dis- 
cussion on the relations that  should exist between 
structure factors if the electron density is known at 
certain points or in certain parts of the unit cell. For 
example, in a center of symmetry the electron density is 
determined solely by the atom, known in general, tha t  
occupies it; and if there is no such atom at the center, the 
density will be essentially zero there. Also, the density 
is low in the immediate neighborhood of the center, 
particularly so if the atoms are 'sharpened up '  in the 
well-known manner. Similar arguments can be given 
for an ordinary symmetry  axis and an ordinary mirror 
plane. 

In  the present paper a simple formulation is derived 
from which one can find the relations between the 
structure factors for these and other particular cases. 

General formulation 
Let p(r) be a piecewise continuous function of the 
position vector r, invariant under the operations of the 
crystallographic translation group (F) and therefore 
uniquely determined by its Fourier coefficients FH, 
where H is a point of the reciprocal lattice 

FH = fcen p(r) exp (2niH. r) dr. (1) 

Suppose tha t  everywhere within the region (or set of 
regions) A, also invariant under the operations of (F) of 
course, p(r) is known: 

p ( r ) = y ( r )  for r in A. (2) 

I f  now we introduce a third function, ~(r), with the 
properties 

~(r) = constant for r in A, I 
~(r) = 0 elsewhere, ~ (3 a) 

such tha t  | a(r)  d r =  l, (3b) 
3c ell 

then we have, instead of (2), 

~( r ) .{p( r ) -~ , ( r )}=0 for any r. (4) 

Writing G H and S H as the Fourier coefficients of the two 
known functions y(r) and cr(r), and expressing the 
functions in Fourier-series form, we can at  once write 
down the Fourier coefficients of the loft-hand side of (4). 
Since the equation holds for any r ,  all these coefficients 
have to be zero. Thus we obtain the relations 

Z SH-K.(Fx-G,~)=O for any H. (5) 
K 

I t  is easily verified tha t  these are also sufficient condi- 
tions for p(r) to be equal to 7(r) throughout A. The 
derivation is independent of the number of dimensions. 

In the particular case where p(r) is known to be zero 
for all points in A, all coefficients G H vanish, and one has 

SH_ K.F x = 0 for any H. (6) 
K 

The coefficients SH for some cases of practical interest 
The general form of the coefficients S~ is 

IAexp (21rill. r) dr  
S,~=" , (7) 

fA dr 

with the understanding tha t  the integration extends 
only over the part  of A in one unit cell. 

From the practical point of view the interesting cases 
are: spheres around symmetry  centers, cylinders along 
symmetry axes, and slices along mirror planes. In the 
second case, S H will be different from zero only in points 
of the plane through the origin perpendicular to the 
axis of the cylinder, and in that  plane the problem is 
two-dimensional, with A the interior of a circle. Like- 
wise, in the third case, we only have to consider the line 
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through the origin perpendicular to the slice; and there 
the problem is one-dimensional, A being a segment of 
a length equal to the thickness of the slice. All three 
cases therefore can be handled simultaneously by con- 
sidering them as 3-, 2- and 1-dimensional spheres 
respectively. 

So let, in n dimensions, the region A consist of a set 
of N non-overlapping spheres of radius R, centered at 
points re( j= 1, 2,. . . ,  N). For that  case (7) can be 
written 

exp (2~iH. r~) exp (27rill. r) dr 
phere radius R S~=J=I  N 

dr 
Js phere radius R 

(8) 
By introducing a new variable ¢, whore 

H . r =  I H ] . R  cos ¢, (9) 

(8) can be brought into the form 

1 ~ 
S~=In(IHI.R)~i~=loxp(2~iH.r~), (10) 

f ~exp (2~ix cos ¢) ¢ d¢ s i n  n 

where In(x)= 0 
[sinnCd ¢ . (11) 

In particular, In (0 )= l .  For the cases of practical 
interest the values are: 

sin 27rx 
11@) =--2~--x--' I 
I~(x) =Jo(2~rx) + J~(2~x), ~ (12) 

sin 27rx cos 2~rx / 
3 J 

in which J,,(z) is the nth Bessel function. 

Practical value 

Conceivably, the relations (5) might be useful in finding 
the phases of the Fourier coefficients when their moduli 
are known from observed X-ray diffraction intensities. 
For example, in the very simple case where there are 

eight symmetry centers in the cell and all atoms are in 
general positions, one can use (6) with SH given by 
(10) [n=3, R = 0 ,  N = 8 ,  r~= (0, 0, 0), (0, 0, ½), (0, ½, 0), 
(½, 0, 0), (0, ½, ½), etc.]. The result is 

ZFH=0 
H 

for each of the eight groups hkl=even, even, even; 
even, even, odd; etc. In this instance, S~ does not at all 
converge. I t  can be made to do so, and more than these 
eight relations obtained, ff the region of zero density 
can be extended out from the symmetry centers. 
Beyond a certain limit, however, this will only be 
possible at the cost of '  sharpening up' ,  by which the F~ 
themselves become less convergent. These two effects 
therefore work in opposite directions as far as the con- 
vergence of the summation in (5) or (6) is concerned. In 
those relations, the point H should always be taken 
sufficiently remote from the boundary of the region in 
reciprocal space that has been investigated, depending 
on the rate at which the coefficients S~ fall off, so that  
any F H of appreciable magnitude that  might occur 
outside the range of observation enters into the 
summation with negligible coefficient. 

An application to Patterson functions 

The present method can be used to settle a point some- 
times brought up: Is it possible to derive relations, in- 
volving the phases of the Fourier coefficients, from the 
fact that  all interatomic distances in a structure are 
known to exceed a certain minimum, say 1A.? This 
means that in the 'sharpened up '  Patterson function 
a sphere of that  radius around the origin will be empty 
except for the origin peak. Applying (6) one has the 
necessary condition 

S~_x. I F x 12-0 for any H, 
K 

where A now contains all points within the sphere 
except the origin. However, we have seen that  these 
relations are also 8u~cient to insure that  that  region is 
empty; and thus, since they involve the magnitudes of 
the Fourier coefficients but not their phases, the 
question raised above has to be answered in the 
negative. 
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